# SIMULATION OF TORNADIC STORMS BY THE WRF MODEL WITH DIFFERENT FORECAST LEAD TIME AND INITIAL CONDITIONS

#### A.V. Bykov<sup>1</sup>,A.N. Shikhov,<sup>2</sup> A.V. Chernokulsky<sup>3</sup>

<sup>1</sup>Perm State University, Department of Meteorology and Atmosphere Protection, <sup>2</sup>Department of cartography and GIS <sup>3</sup>A.M.Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

> The study was supported by RSCF project (18-77-10076) and RFBR project 16-05-00245-a,

### Scientific challenge

- Many research teams in the U.S, Europe and Russia studied the possibility of explicit simulation and short-term forecasting of tornadic storms with the use of mesoscale atmospheric models (commonly, the Weather Research and Forecasting (WRF)) model. However, the simulation results are often unsatisfactory in terms of simulated storm intensity, spatial and time accuracy.
- We considered the possibility of short-term forecast of three strong (F2-F3) tornado events in the Ural region (29 Aug 2014, 3 June 2017 and 18 June 2017)

### Purpose of the study

• Estimate the influence of forecast lead time (12, 24 or 36 h), and the initial conditions (GFS forecast or ECMWF ERA-5 data) on the accuracy of simulation of tornadic storms

#### 29 Aug 2014 EF3 tornado in Bashkortostan



### 3 June 2017 severe weather outbreak (Sverdlovsk region)

| Location                                        | Time Type of |                              | Data sources                                                              | Inten<br>sitv | Damage to                                                                        | Forest damage track                                 |                            |
|-------------------------------------------------|--------------|------------------------------|---------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|
|                                                 | (010)        | event                        |                                                                           | Sity          | infrastructure                                                                   | Length (km),<br>average and<br>maximum<br>width (m) | Dama<br>ged<br>area,<br>ha |
| 57.24 N; 59.32<br>E (Staroutkinsk<br>town)      | 11.15        | tornado                      | Eye-witnesses and<br>damage reports,<br>forest damage                     | F2            | Dozens of houses<br>damaged, roofs<br>destroyed                                  | 19,8/140/380                                        | 114                        |
| 57.64 N; 59.44<br>E (near Visim<br>town)        | 11.45        | tornado                      | forest damage                                                             | F2            | There is no<br>damage in<br>settlements                                          | 20,5/248/585                                        | 440                        |
| 58.05 N; 60.04<br>E (Nizhniy Tagil<br>city)     | 13.00        | squall                       | Weather station,<br>eye-witnesses and<br>damage reports,<br>forest damage | 26<br>m/s     | 1 fatality, up to<br>10 injured,<br>estimated<br>damage more<br>than \$3 000 000 | Local<br>windthrows                                 | 192                        |
| 58.81 N; 59.52<br>E (near<br>Kachkanar<br>town) | 14.30        | Downbu<br>rst, large<br>hail | Eye-witnesses<br>reports, forest<br>damage                                | No<br>data    | Damage to<br>houses (roofs<br>destroyed)                                         | 10,7/420/1650                                       | 382                        |

#### 18 June 2017 severe weather outbreak (Kurgan region)

| Location                                              | Time<br>(UTC) | Type of<br>event | Data sources                                          | Inten<br>sity | Damage to settlements and                                               | Forest damage track                                 |                            |
|-------------------------------------------------------|---------------|------------------|-------------------------------------------------------|---------------|-------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|
|                                                       |               |                  |                                                       |               | infrastructure                                                          | Length (km),<br>average and<br>maximum<br>width (m) | Dama<br>ged<br>area,<br>ha |
| 55.16 N, 66.53<br>E Tsentral'noye<br>village)         | 11.00         | tornado          | Eye-witnesses<br>reports                              | No<br>data    | There is no<br>damage in<br>settlements                                 | There is no fo<br>damage                            | orest                      |
| 55.29 N, 66.30<br>E (Kravtsevo<br>village)            | 11.15         | tornado          | Eye-witnesses and damage reports                      | F1            | Damage to houses<br>(roofs destroyed)                                   | There is no fo<br>damage                            | orest                      |
| 55.58 N, 66.61<br>E (Maloye<br>Pes'yanovo<br>village) | 11.45         | tornado          | Eye-witnesses and<br>damage reports,<br>forest damage | F3            | Several people<br>injured; 25 houses<br>damaged, 4 totally<br>destroyed | 28,4/245/1200                                       | 340                        |
| 56.48 N, 66.46<br>E (Tumen'<br>region)                | 13.00         | tornado          | forest damage                                         | F1            | There is no<br>damage in<br>settlements                                 | 2,2/126/300                                         | 30                         |

# Synoptic-scale environments (29 Aug 2014)

36456

52.52

4

20

8

3

ł

δ

300 hPa wind speed [m/s] (shaded) & geopot [m] (lines)



AVN-GFS Model Run: 00Z01AUG2014 Valid: 12Z29AUG2014

# Synoptic-scale environments (3 June 2017)

Copyright (C) Bykov Alexey, Perm State University, Meteorology Department



GFS Model Run: 00Z03JUN2017 Valid: 12Z03JUN2017

## Synoptic-scale environments (18 June 2017)

Copyright (C) Bykov Alexey, Perm State University, Meteorology Department

#### 300 hPa wind [m/s] (shaded) & geopot [dam] (bold lines)

![](_page_7_Figure_3.jpeg)

GFS Model Run: 00Z18JUN2017 Valid: 12Z18JUN2017

# Tornado tracks in forest (3 June 2017)

![](_page_8_Figure_1.jpeg)

### Forest damage near Visim settlement 3 June 2017

![](_page_9_Picture_1.jpeg)

### Tornado outbreak 18 June 2017

![](_page_10_Figure_1.jpeg)

# WRF model settings

| Model characteristic                       | Setting                                                                               |
|--------------------------------------------|---------------------------------------------------------------------------------------|
| Horizontal grid resolution and grid points | 7,2 km/278×278 (without nested grid)                                                  |
|                                            | 3 km/600×600 (without nested grid)                                                    |
|                                            | 9 km/333×333, with one nested grid (3 km/400×400)                                     |
| Number of vertical layers (up to 5000 mb)  | 38                                                                                    |
| Topography                                 | U.S. Geological Survey (USGS) DEM (30s)                                               |
| Simulation length                          | 27 h                                                                                  |
| Output data time step                      | 1 h                                                                                   |
| Dynamics                                   | Non-hydrostatic                                                                       |
| Model core                                 | Advanced Research WRF (ARW), non-hydrostatic                                          |
| Integration time step                      | 48 or 18 seconds                                                                      |
| Initial and lateral boundary               | 0,25° GFS forecast                                                                    |
| Microphysics schemes                       | Thompson scheme                                                                       |
| Planetary Boundary Layer (PBL) scheme      | Yonsei University scheme                                                              |
| Land surface physics scheme                | Noah Land Surface Model                                                               |
| Long and short wave radiation scheme       | Rapid Radiative Transfer Model (RRTM)                                                 |
| Surface layer scheme                       | Monin-Obukhov with Carslon-Boland viscous sub-layer and standard similarity functions |
| Convection                                 | Explicit (cloud-resolving) modeling                                                   |

#### WRF model forecast of supercell storms 03.06.2017 and 18.06.2017 with 12 h lead time, and comparison with Meteosat data

| Date, time (UTC) | Model grid size, km      | WRF-simulated supercell storms parameters (maximum values in 50-km radius around tornado track) |                                |                      |  |  |
|------------------|--------------------------|-------------------------------------------------------------------------------------------------|--------------------------------|----------------------|--|--|
|                  |                          | 0–3 km storm relative helicity (SRH), $m^2 \cdot s^{-2}$                                        | Composite<br>reflectivity, DBZ | Wind gust speed, m/s |  |  |
| 03.06.2017,      | 7,2                      | 1200                                                                                            | 42                             | 13                   |  |  |
| 11.00 - 12.00    | 3                        | 1075                                                                                            | 58                             | 13                   |  |  |
|                  | 3 (with one nested grid) | 770                                                                                             | 47                             | -                    |  |  |
| 18.06.2017,      | 7,2                      | 610                                                                                             | 56                             | 23                   |  |  |
| 12.00 - 13.00    | 3                        | 1200                                                                                            | 64                             | 31                   |  |  |
|                  | 3 (with one nested grid) | 990                                                                                             | 58                             | 31                   |  |  |

| Date, time<br>(UTC) | Model grid resolution, km | Minimum cloud top<br>temperature, °C<br>(Meteosat-8 data/ WRF<br>model forecast) | Distance<br>between actual and<br>simulated storm track,<br>km | Time<br>error, h |
|---------------------|---------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------|------------------|
| 03.06.2017,         | 7,2                       | -62/-61                                                                          | 40                                                             | +1,25            |
| 11.00 - 12.00       | 3                         | -62/-61                                                                          | 10                                                             | 0                |
|                     | 3 (with one (nested grid) | -62/-62                                                                          | 0                                                              | -0,5             |
| 18.06.2017,         | 7,2                       | -64/-62                                                                          | 35                                                             | +1,5             |
| 11.00 - 12.00       | 3                         | -64/-64                                                                          | 10                                                             | +1,5             |
|                     | 3 (with one (nested grid) | -64/-62                                                                          | 15                                                             | +2,5             |

WRF model forecast of tornadic storm 3 June 2017 with 3 km grid resolution and 12 h lead time (from 00 h UTC 3 June 2017). Initial data – GFS model forecast

![](_page_13_Figure_1.jpeg)

HRV cloud RGB image (a) and cloud top temperature (b) by Meteosat-8 data; WRF-simulated cloud top temperature (c) and composite reflectivity (d) at 12.00 UTC 3 June 2017. Initial data – GFS model forecast from 00 UTC 3 June 2017

![](_page_14_Figure_1.jpeg)

WRF model forecast of tornadic storm 18 June 2017 with 3 km grid resolution and 12 h lead time (from 00 h UTC 18 June 2017). Initial data - GFS model forecast

![](_page_15_Figure_1.jpeg)

HRV cloud RGB image (a) and cloud top temperature (b) by Meteosat-8 data; WRF-simulated cloud top temperature (c) and composite reflectivity (d) at 12.00 UTC 18 June 2017. Initial data – GFS model forecast from 00 UTC 18 June 2017

![](_page_16_Figure_1.jpeg)

#### WRF model forecast of supercell storms 03.06.2017 and 18.06.2017 with 24 h and 36 h lead time, and comparison with Meteosat data

| Date, time (UTC) | Model start date<br>and time (UTC) | WRF-simulated supercell storms parameters (maximum values in 50-km radius around tornado track) |                                |                         |  |  |
|------------------|------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------|-------------------------|--|--|
|                  |                                    | 0–3 km storm relative helicity (SRH), $m^2 \cdot s^{-2}$                                        | Composite<br>reflectivity, DBZ | Wind gust<br>speed, m/s |  |  |
| 03.06.2017,      | 02.06.2017, 00.00                  | 1000                                                                                            | 57                             | 17                      |  |  |
| 11.00 - 12.00    | 02.06.2017, 12.00                  | 1350                                                                                            | 60                             | 28                      |  |  |
| 18.06.2017,      | 17.06.2017, 00.00                  | 600                                                                                             | 52                             | 30                      |  |  |
| 12.00 - 13.00    | 17.06.2017, 12.00                  | 400                                                                                             | 57                             | 23                      |  |  |

| Date, time (UTC)             | Model start date and<br>time (UTC) | Minimum cloud top<br>temperature, °C<br>(Meteosat-8 data/ WRF<br>model forecast) | Distance<br>between actual and<br>simulated storm<br>track, km | Time<br>error, h |
|------------------------------|------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------|------------------|
| 03.06.2017,<br>11.00 – 12.00 | 02.06.2017, 00.00                  | -62/-61                                                                          | 50                                                             | +1,25            |
|                              | 02.06.2017, 12.00                  | -62/-64                                                                          | 15                                                             | +1,5             |
| 18.06.2017,<br>11.00 – 12.00 | 17.06.2017, 00.00                  | -64/-61                                                                          | 50                                                             | +1,25            |
|                              | 17.06.2017, 12.00                  | -64/-62                                                                          | 35                                                             | +1,0             |

#### WRF model forecast of tornadic storm 3 June 2017 with 3 km grid resolution and 24 h lead time (from 12 h UTC 2 June 2017). Initial data – GFS model forecast

![](_page_18_Figure_1.jpeg)

WRF model forecast of tornadic storm 3 June 2017 with 3 km grid resolution and 36 h lead time (from 00 UTC 2 June 2017). Initial data – GFS model forecast

![](_page_19_Figure_1.jpeg)

#### **Experiments with ECMWF ERA-5 initial data**

- Two tornadic storms (29 Aug 2014 and 3 June 2017) are additionally simulated by the WRF model with the use of ECMWF ERA-5 initial data
- WRF model grid resolution is 3 km, forecast lead time 18 h.
- The simulation results are compared with the same, obtained with the use of GFS model initial data

#### WRF model forecast of tornadic storm 3 June 2017 with 3 km grid resolution and 18 h lead time (from 18 UTC 2 June 2017). Initial data – ECMWF ERA-5 reanalysis

![](_page_21_Figure_1.jpeg)

#### WRF model forecast of tornadic storm 29 Aug 2014 with 3 km grid resolution and 18 h lead time (from 18 UTC 28 Aug 2014). Initial data – ECMWF ERA-5 reanalysis

![](_page_22_Figure_1.jpeg)

#### WRF model forecast of tornadic storm 29 Aug 2014 with 3 km grid resolution and 12 h lead time (from 00 UTC 29 Aug 2014). Initial data – GFS model forecast

![](_page_23_Figure_1.jpeg)

### Conclusion and future studies

- The WRF model with GFS initial data successfully reproduced two out of three studied supercell storms with strong tornadoes (3 June 2017 and 18 June 2018). Low-level mesocyclones (with a deepness ~ 10 hPa in the SLP field), high values of composite reflectivity (>55 dBz), extremely high storm-relative helicity (SRH >1000 m<sup>2</sup>/s<sup>-2</sup>) and wind gusts > 25 m/s are reproduced by the model.
- The effect of forecast lead time on the accuracy is ambiguous. For example, the tornadic storm 3 June 2017 was successfully simulated with 24 h lead time, but its intensity was substantially underestimated by the 12-h forecast. In the same time, the most accurate forecast of tornadic storm 18 June 2017 was obtained with 12 h lead time.
- The ECMWF ERA-5 initial data can improve the forecast accuracy, in comparison with GFS model data (on example of tornadic storm 29 Aug 2014). Additional studies will be conducted on this issue. Also, it is necessary to estimate the frequency of false alarms in the forecast of supercell storms.

# Thank you for your attention

Andrey Shikhov, candidate of geography, Perm State University e-mail: and3131@inbox.ru URL: http://accident.perm.ru/